
Belay
Release 0.0.0

Brian Pugh

Feb 12, 2023

CONTENTS:

1 Who is Belay For? 3

2 What Problems Does Belay Solve? 5

3 Installation 7

4 Examples 9
4.1 Installation . 9
4.2 Quick Start . 10
4.3 CircuitPython . 15
4.4 Connections . 16
4.5 Package Manager . 18
4.6 How Belay Works . 24
4.7 API . 26

5 Indices and tables 31

Python Module Index 33

Index 35

i

ii

Belay, Release 0.0.0

Belay is:

• A python library that enables the rapid development of projects that interact with hardware via a MicroPython
or CircuitPython compatible board.

• A command-line tool for developing standalone MicroPython projects.

• A MicroPython package manager.

Belay supports wired serial connections (USB) and wireless connections via WebREPL over WiFi.

Quick Video of Belay in 22 seconds.

See the documentation for usage and other details.

CONTENTS: 1

https://www.youtube.com/watch?v=wq3cyjSE8ek
https://belay.readthedocs.io

Belay, Release 0.0.0

2 CONTENTS:

CHAPTER

ONE

WHO IS BELAY FOR?

Belay is for people creating a software project that needs to interact with hardware. Examples include:

• Control a motor so a webcam is always pointing at a person.

• Turn on an LED when you receive a notification.

• Read a potentiometer to control system volume.

The Belay Package Manager is for people that want to use public libraries, and get them on-device in an easy, repeatable,
dependable manner.

3

Belay, Release 0.0.0

4 Chapter 1. Who is Belay For?

CHAPTER

TWO

WHAT PROBLEMS DOES BELAY SOLVE?

Typically, having a python script interact with hardware involves 3 major challenges:

1. On-device firmware (usually C or MicroPython) for directly handling hardware interactions. Typically this is
developed, compiled, and uploaded as a (nearly) independent project.

2. A program on your computer that performs the tasks specified and interacts with the device.

3. Computer-to-device communication protocol. How are commands and results transferred? How does the device
execute those commands?

This is lot of work if you just want your computer to do something simple like turn on an LED. Belay simplifies all of
this by merging steps 1 and 2 into the same codebase, and manages step 3 for you. Code is automatically synced at the
beginning of script execution.

The Belay Package Manager makes it easy to cache, update, and deploy third party libraries with your project.

5

Belay, Release 0.0.0

6 Chapter 2. What Problems Does Belay Solve?

CHAPTER

THREE

INSTALLATION

Belay requires Python >=3.8 and can be installed via:

pip install belay

The MicroPython-compatible board only needs MicroPython installed; no additional preparation is required. If using
CircuitPython, and additional modification needs to be made to boot.py. See documentation for details.

7

https://belay.readthedocs.io/en/latest/CircuitPython.html

Belay, Release 0.0.0

8 Chapter 3. Installation

CHAPTER

FOUR

EXAMPLES

Turning on an LED with Belay takes only 6 lines of code. Functions decorated with the task decorator are sent to the
device and interpreted by the MicroPython interpreter. Calling the decorated function on-host sends a command to the
device to execute the actual function.

import belay

device = belay.Device("/dev/ttyUSB0")

@device.task
def set_led(state):

print(f"Printing from device; turning LED to {state}.")
Pin(25, Pin.OUT).value(state)

set_led(True)

Outputs from print calls from on-device user-code are forwarded to host stdout.

For more examples, see the examples folder.

4.1 Installation

Belay requires Python >=3.8 and can be installed from pypi via:

python -m pip install belay

To install directly from github, you can run:

python -m pip install git+https://github.com/BrianPugh/belay.git

For development, its recommended to use Poetry:

git clone https://github.com/BrianPugh/belay.git
cd belay
poetry install

9

https://github.com/BrianPugh/belay/tree/main/examples

Belay, Release 0.0.0

4.2 Quick Start

Belay is a library that makes it quick and easy to interact with hardware via a MicroPython-compatible microcontroller.
Belay has a single imporant class, Device:

import belay

device = belay.Device("/dev/ttyUSB0")

Creating a Device object connects to the board at the provided port. On connection, the device is reset into REPL
mode, and a few common imports are performed on-device, namely:

import os, time, machine
from time import sleep
from micropython import const
from machine import ADC, I2C, Pin, PWM, SPI, Timer

The Device class has several useful methods:

1. __call__ - Generic statement/expression string evaluation.

2. setup - Executes body on-device in a global context.

3. task - Executes function on-device.

4. teardown - Executes body on-device in a global context when connection is closed.

5. thread - Executes function on-device in a background thread.

6. sync - Generic file synchronization from host to device.

7. sync_dependencies - For python packages to sync bundled micropython dependencies to board.

These are described in more detail in the subsequent subsections.

4.2.1 call

Directly calling the device instance, like a function, invokes a python statement or expression on-device.

Invoking a python statement like:

ret = device("foo = 1 + 2")

would execute the code foo = 1 + 2 on-device in the global context. Because this is a statement, the return value,
ret is None.

Invoking a python expression like:

res = device("foo")

results in the return value res == 3 on host.

10 Chapter 4. Examples

Belay, Release 0.0.0

4.2.2 setup

The setup decorator is a way of invoking code on-device in a global context, and is commonly used for imports and
instantiating objects and hardware. For example:

@device.setup
def setup(pin_number):

from machine import Pin

led = Pin(pin_number)

setup(25)

is equivalent to:

device("pin_number = 25")
device("from machine import Pin")
device("led = Pin(pin_number)")

Functions decorated with setup should be called only a few times at most. For repeated functions calls, use the task
decorator.

4.2.3 task

The task decorator sends the decorated function to the device, and replaces the host function with a remote-executor.

Consider the following:

@device.task
def foo(a):

return a * 2

Invoking bar = foo(5) on host sends a command to the device to execute the function foo with argument 5. The
result, 10, is sent back to the host and results in bar == 10. This is the preferable way to interact with hardware.

Alternatively, the foo function will also be available at device.task.foo.

4.2.4 teardown

Same as setup, but automatically executes whenever device.close() is called. If Device is used as a context
manager, device.close() is automatically called at context manager exit. Typically used for cleanup, like turning
off LEDs or motors.

4.2. Quick Start 11

Belay, Release 0.0.0

4.2.5 thread

thread is similar to task, but executes the decorated function in the background on-device.

@device.thread
def led_loop(period):

led = Pin(25, Pin.OUT)
while True:

led.toggle()
sleep(period)

led_loop(1.0) # Returns immediately

Not all MicroPython boards support threading, and those that do typically have a maximum of 1 thread. The decorated
function has no return value.

4.2.6 sync

For more complicated hardware interactions, additional python modules/files need to be available on the device's filesys-
tem. sync takes in a path to a local folder. The contents of the folder will be synced to the device's root directory.

For example, if the local filesystem looks like:

project
main.py
board

foo.py
bar

baz.py

Then, after device.sync("board") is ran from main.py, the remote filesystem will look like

foo.py
bar

baz.py

4.2.7 sync_dependencies

Syncs data that has been bundled with a python package. sync_dependencies is intended to make including mi-
cropython dependencies easier for pip-installable host-program.

from belay import Device

device = Device("/dev/ttyUSB0")

device.sync_dependencies("mypackage", "board")
Alternative usage
import mypackage

device.sync_dependencies(mypackage, "board")

12 Chapter 4. Examples

Belay, Release 0.0.0

An intended use-case is to this method inconjunction with Belay's builtin package manager.
Configure dependencies_path in pyproject.toml to point inside your python package, i.e.
dependencies_path="mypackage/dependencies". In doing so, micropython dependencies will be stored
inside your package. For this example, lets assume that pyproject.toml defines main and dev dependencies. The
data can then be synced:

device.sync_dependencies(mypackage, "dependencies/main", "dependencies/dev")

Depending on your build system, other non-belay configurations may need to be performed to ensure other data is
included in your python package.

4.2.8 Subclassing Device

Device can be subclassed and have task/thread methods. Benefits of this approach is better organization, and being
able to define tasks/threads before the actual object is instantiated.

Consider the following:

from belay import Device

device = Device("/dev/ttyUSB0")

@device.task
def foo(a):

return a * 2

is roughly equivalent to:

from belay import Device

class MyDevice(Device):
@Device.task
def foo(a):

return a * 2

device = MyDevice("/dev/ttyUSB0")

Marking methods as tasks/threads in a class requires using the capital @Device.task decorator. Methods marked
with @Device.task are similar to @staticmethod in that they do not contain self in the method signature. To the
device, each marked method is equivalent to an independent function. Methods can be marked with @Device.setup
or @Device.thread for their respective functionality. Methods not marked with these decorators are just normal,
boring python methods.

For methods decorated with @Device.setup, the flag autoinit=True can be set to automatically call the method at
the end of object creation. The decorated method must have no parameters, otherwise a ValueError will be raised.

from belay import Device

class MyDevice(Device):
@Device.setup(autoinit=True)

(continues on next page)

4.2. Quick Start 13

Belay, Release 0.0.0

(continued from previous page)

def setup():
foo = 42

device = MyDevice("/dev/ttyUSB0")
Do NOT explicitly call ``device.setup()``, it has already been invoked.

The Device class also has some hook methods that can be implemented to give customization to the object initialization
process:

1. __pre_autoinit__ - Called near the end of __init__, after convenience imports have been imported, but
before methods marked with @Device.setup(autoinit=True) are invoked. This is a good location to sync
additional micropython dependencies to device.

2. __post_init__ - Called at the very end of __init__. This is a good location to set custom object attributes.

The following example will (in order):

1. Synchronize code located at dependencies/main within my_package to on-device /lib.

2. On-device, declare the global variable operation_mode_pin representing an input on pin 10.

3. On-host, query operation_mode_pin and set the attribute operation_mode, which could be used in other
host methods.

from belay import Device

class MyDevice(Device):
def __pre_autoinit__(self):

runs before ``setup(autoinit=True)`` decorated methods
self.sync_dependencies("my_package", "dependencies/main")

@Device.setup(autoinit=True)
def setup():

A hypothetical jumper that controls how the device should function.
operation_mode_pin = Pin(10, Pin.IN, Pin.PULL_UP)

def __post_init__(self):
runs after ``setup(autoinit=True)`` decorated methods
if self("operation_mode_pin.value"):

self.operation_mode = "dev"
else:

self.operation_mode = "prod"

14 Chapter 4. Examples

Belay, Release 0.0.0

4.3 CircuitPython

Belay also supports CircuitPython. Unlike MicroPython, CircuitPython automatically mounts the device's filesystem
as a USB drive. This is usually convenient, but it makes the filesystem read-only to the python interpreter. To get
around this, we need to manually add the following lines to boot.py on-device.

import storage

storage.remount("/")

Afterwards, reset the device and it's prepared for Belay.

4.3.1 Reverting

To revert this configuration, there are multiple options:

1. Edit boot.py using Thonny, then reboot. Thonny (like Belay), operates via the REPL, so it has write-access
since it's operating through circuitpython.

2. Through circuitpython's REPL via an interactive shell, such as rshell or python -m serial.tools.
miniterm:

import os

os.remove("boot.py")

3. Using Belay in an interactive python prompt on host:

from belay import Device

device = Device("/dev/ttyUSB0") # replace with appropriate port
device("os.remove('boot.py')")
Then reboot.

4.3.2 Physical Configuration

Storage mounting can be configured based on a physical pin state. Adding the following contents to /boot.py will
configure the system to:

• Be in "normal" circuitpython mode if pin 14 is floating/high (due to configured pullup) on boot.

• Be in Belay-compatible mode if pin 14 is connected to ground on boot. This could be done, for example, by a
push-button or a toggle switch.

import board
import storage
from digitalio import DigitalInOut, Pull

op_mode = DigitalInOut(board.GP14) # Choose whichever pin you would like
op_mode.switch_to_input(Pull.UP)

if not op_mode.value:
(continues on next page)

4.3. CircuitPython 15

https://circuitpython.org
https://thonny.org

Belay, Release 0.0.0

(continued from previous page)

Mount system in host-readonly, circuitpython-writeable mode (Belay compatible).
storage.remount("/")

4.4 Connections

This section describes the connection with the device, as well as other elements regarding the connection of the device.

4.4.1 Reconnect

In the event that the device is temporarily disconnected, Belay can re-attempt to connect to the device and restore state.
Typically, this will only work with projects that are purely sensor/actuator IO and do not have complicated internal
states.

To enable this feature, set the keyword attempts when declaring your Device. Belay will attempt up to attempts
times to reconnect to the device with 1 second delay in-between attempts. If Belay cannot restore the connection, it
will raise a ConnectionLost exception.

Example:

device = Device("/dev/ttyUSB0", attempts=10)

By default, attempts=0, meaning that Belay will not attempt to reconnect with the device. If attempts is set to a
negative value, Belay will infinitely attempt to reconnect with the device. If using a serial connection, a serial device
__might__ not be assigned to the name upon reconnecting. See the UDev Rules section for ways to ensure the same
name is assigned upon reconnection.

How State is Restored

This section describes how the state is restored on-device, so the user can understand the limitations of Belay's reconnect
feature.

1. When Belay sends a command to the device, the command is recorded into a command history. Func-
tion/generator calls are not recorded. These calls are expected to be frequent and not significantly modify the
device's internal state.

2. On device disconnect, nothing happens.

3. On the next attempted Belay call, Belay will begin to attempt to reconnect with the device. This inherently resets
the device, and consequently resets the device's python interpreter state.

4. Upon reconnection, Belay will replay the entire call history. For most projects, this should be relatively short
and typically includes things like:

a. File-syncs: device.sync("board/")

b. Library imports: device("import mysensor")

b. Global object creations: device("sensor = mysensor.Sensor()")

c. Task definitions:

@device.task
def read_sensor():

return sensor.read()

16 Chapter 4. Examples

Belay, Release 0.0.0

This history replay can result in a longer-than-expected blocking call.

4.4.2 Interface

Belay currently supports two connection interfaces:

1. Serial, typically over a USB cable. Recommended connection method.

2. WebREPL, typically over WiFi. Experimental and relatively slow due to higher command latency.

Serial

This is the typical connection method over a cable and is fairly self-explanatory.

UDev Rules

To ensure your serial device always connects with the same name, we can create a udev rule. Invoke lsusb to figure
out some device information; the response should look like:

belay:~/belay$ lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 239a:80f4 Adafruit Pico
Bus 001 Device 002: ID 2109:3431 VIA Labs, Inc. Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Left of the colon is the 4-character idVendor value, and right of the colon is the 4-character idProduct value. Next,
edit a file at /etc/udev/rules.d/99-usb-serial.rules to contain:

SUBSYSTEM=="tty", ATTRS{idVendor}=="xxxx", ATTRS{idProduct}=="yyyy", SYMLINK+="target"

For example, the following will map the "Adafruit Pico" to /dev/ttyACM10:

SUBSYSTEM=="tty", ATTRS{idVendor}=="239a", ATTRS{idProduct}=="80f4", SYMLINK+="ttyACM10"

Finally, the following command will reload the udev rules without having to do a reboot:

sudo udevadm control --reload-rules && sudo udevadm trigger

WebREPL

WebREPL is a protocol for accessing a MicroPython REPL over websockets.

WebREPL requires the MicroPython-bundled webrepl server running on-device. To run the WebREPL server on
boot, we need two files on device:

1. boot.py that connects to your WiFi and starts the server.

2. webrepl_cfg.py that contains the password to access the WebREPL interface.

These files may look like (tested on an ESP32):

4.4. Connections 17

https://github.com/micropython/webrepl

Belay, Release 0.0.0

###########
boot.py
###########
def do_connect(ssid, pwd):

import network

sta_if = network.WLAN(network.STA_IF)
if not sta_if.isconnected():

print("connecting to network...")
sta_if.active(True)
sta_if.connect(ssid, pwd)
while not sta_if.isconnected():

pass
print("network config:", sta_if.ifconfig())

Attempt to connect to WiFi network
do_connect("YOUR WIFI SSID", "YOUR WIFI PASSWORD")

import webrepl

webrepl.start()

##################
webrepl_cfg.py
##################
PASS = "python"

Once these files are on-device, connect to the device by providing the correct IP address and password. The ws://
prefix tells Belay to use WebREPL.

device = belay.Device("ws://192.168.1.100", password="python")

4.5 Package Manager

The Belay CLI provides package manager functionality. At a high level, the Belay Package Manager does the following:

1. Reads settings from pyproject.toml. Dependencies are defined by URL's where they can be fetched. Com-
monly these are files hosted on github.

2. Downloads dependencies to the .belay/dependencies/ folder. This folder should be committed to the
project's git repository. This allows for repeatable deployment, even if a remote dependency goes missing or
changes it's API.

3. Syncs the contents of .belay/dependencies/ to the on-device /lib folder. This folder is included in the
on-device PATH.

4. Syncs the contents of the project package directory.

18 Chapter 4. Examples

Belay, Release 0.0.0

4.5.1 Configuration

Belay's Package Manager uses pyproject.toml to define project configurations and dependencies. A typical project
will look like:

[tool.belay]
name = "my_project_name"

[tool.belay.dependencies]
some_dependency = "https://github.com/BrianPugh/some-dependency/blob/main/some_
→˓dependency.py"

Belay assumes the project contains a python-package (folder) with the same name as tool.belay.name. This directory
is synced (in addition to dependencies) when belay install is ran.

Dependencies

To add python dependencies to a project, specify them in the tool.belay.dependencies section. This section con-
tains a mapping of package names to URIs where they can be fetched from. There isn't a strong centralized micropython
package repository, so Belay relies on directly specifying python file URLs. Belay supports several dependency values:

1. A string to a local file/folder path:

pathlib = "../micropython-lib/python-stdlib/pathlib/pathlib.py"
os = "../micropython-lib/python-stdlib/os/os"

2. A github link to a single file or a folder:

pathlib = "https://github.com/micropython/micropython-lib/blob/master/python-stdlib/
→˓pathlib/pathlib.py"
os = "https://github.com/micropython/micropython-lib/tree/master/python-stdlib/os/os
→˓"

3. A dictionary with a detailed specification:

pathlib = {uri="../micropython-lib/python-stdlib/pathlib/pathlib.py", develop=true}

4. A list of any of the above if multiple files are required for a single package:

os = [
"https://github.com/micropython/micropython-lib/blob/master/python-stdlib/os/os/

→˓__init__.py",
"https://github.com/micropython/micropython-lib/blob/master/python-stdlib/os-

→˓path/os/path.py",
]

This is most common for packages that have optional submodules.

Support for other types can be added. Please open up a github issue if Belay doesn't support a desired file source.

If specifying a dependency via dictionary, the following fields are available:

• uri - local or remote path to fetch data from. Must be provided.

• develop - Dependency is in "editable" mode. The dependency source is directly used during belay install.
Primarily used for a local dependency actively under development. Defaults to False.

4.5. Package Manager 19

Belay, Release 0.0.0

Groups

Belay supports groups of dependencies, allowing subsets of dependencies to be used in different situations. To declare
a new dependency group, use a tool.poetry.group.<group> section where <group> is the name of a dependency
group. dev is a common dependency group including packages like unittest.

[tool.belay.group.dev.dependencies]
unittest = [

"https://github.com/micropython/micropython-lib/blob/master/python-stdlib/unittest/
→˓unittest/__init__.py",
"https://github.com/micropython/micropython-lib/blob/master/python-stdlib/unittest-

→˓discover/unittest/__main__.py",
]

By default, all dependency groups are installed to device. A dependency group can be marked as optional, meaning it
won't be installed during a belay install call unless explicitly specified belay install --with=dev.

[tool.belay.group.dev]
optional = true

All dependency groups are available to a host micropython interpreter via belay run micropython. See the run
command section for more details.

Pytest

Since micropython and normal python code logic are mostly interoperable, code can be tested using pytest by adding
the Belay dependency folder(s) to pytest's configuration:

[tool.pytest.ini_options]
pythonpath = ".belay/dependencies/main .belay/dependencies/dev"

We recommend structuring projects to abstract hardware and micropython-specific features so that the majority of code
can be tested with pytest using normal desktop CPython or unittestwith desktop micropython. This will inherently
produce better structured, more robust code and improve development iteration speed.

4.5.2 CLI Commands

This section describes all the commands available via belay. To get help from the command-line, add --help to any
command for more information.

new

Creates a new directory structure suitable as a starting point for most belay projects.

belay new my-project

The project structure is as follows:

my-project/
my-project/
__init__.py

(continues on next page)

20 Chapter 4. Examples

Belay, Release 0.0.0

(continued from previous page)

pyproject.toml
README.md

update

Updates dependencies specified in pyproject.toml.

belay update

By default, the downloaded dependencies are stored in .belay/dependencies/<group>/. The .belay/ folder
should be committed to git and can be thought of as a dependency lock file.

Belay will not perform any dependency solving. It will only download the dependencies explicitly specified in the
pyproject.toml. If a dependency itself has dependencies, they must be explicitly added to pyproject.toml.

By default, all dependencies are updated. To update only specific dependencies, list them as such:

belay update pathlib itertools

Previously downloaded dependencies that are no longer referenced in tool.belay.dependencies are automatically
deleted.

install

Syncs the project and dependencies to device.

belay install [PORT]

To additionally sync a script to /main.py, specify the script using the --main option.

belay install [PORT] --main main.py

During development, it is often convenient to specify a script to run without actually syncing it to /main.py. For this,
specify the script using the --run option.

belay install [PORT] --run main.py

To include a dependency group that has been declared optional, add the --with option.

belay install [PORT] --with dev

run

The run command serves 2 purposes:

1. Run a python script on-device.

2. Run a local executable in a pseudo-micropython-virtual-environment.

4.5. Package Manager 21

Belay, Release 0.0.0

Running a Script on Device

When developing a script, it is often useful to edit it on-host and then execute it on-device. This helps circumvent issues
with a flaky device filesystem. In the following command, my_script.py is executed on-device without explicitly
writing it to the device's filesystem.

belay run [PORT] my_script.py

Virtual Environment

If the first argument after run is an executable, Belay will instead execute the remainder of the command after setting
some environment variables. Namely, Belay will set the environment variable MICROPYPATH to all of the dependency
groups' folders. This makes all of the dependencies accessible to a micropython binary, making it easier to test
micropython code on-host.

belay run micropython my_script.py

This is not a true virtual environment; currently the micropython binary must be externally supplied.

clean

Removes any previously downloaded dependencies no longer specified in tool.belay.dependecies.

belay clean

clean is automatically invoked at the end of belay update, so this command will usually not be necessary.

cache

Belay keeps a cache of files that aid when downloading and updating dependencies. The location of this cache depends
on the operating system:

• Windows: %LOCALAPPDATA%\belay

• MacOS: ~/Library/Caches/belay

• Linux: ~/.cache/belay

info

Displays Belay's cache location and other metadata.

$ belay cache info
Location: /Users/brianpugh/Library/Caches/belay
Elements: 1
Total Size: 3.84MB

22 Chapter 4. Examples

Belay, Release 0.0.0

list

Lists all the items Belay is currently caching.

$ belay cache list
git-github-micropython-micropython-lib

clear

Deletes all cached items that begin with the provided prefix

belay cache clear

For example, to delete all git caches, use the command:

belay cache clear git

To clear all caches, specify the --all flag.

belay cache clear --all

By default, Belay will display an interactive prompt to confirm the clearing action. This confirmation prompt can be
bypassed by specifying the --yes flag.

belay cache clear --all --yes

4.5.3 Q&A

How does Belay's package manager compare to mip?

Mip and Belay have different design goals and associated restrictions. Mip is designed to be ran on micropython, and
is thusly restricted by available libraries. Belay is designed to be ran on full desktop python (e.g. cpython) to provide
support to a micropython environment. The closest tool to Belay's Package Manager would actually be mpremote mip.
With this tool you can specify remote files via a json configuration file.

Belay aims to provide a more robust, friendly experience by the following:

1. Use the standard pyproject.toml file for configurations and dependency specifications.

2. Make project robust to third-party changes by caching dependencies in-project. Your project won't become
non-functional due to a remote dependency gone missing. Your project won't unexpectedly break due to a de-
pendency change unless belay update is ran to update dependencies. Changes can be easily revertted due to
git versioning.

3. Options to minify or compile code prior to sending it to device. This encourages more comments and docstrings.

4.5. Package Manager 23

Belay, Release 0.0.0

What limitations does Belay's package manager have?

• Currently, only single-file dependencies are allowed. Luckily, this appears to be most micropython packages.

• Dependencies are not recursively searched; if a dependency has it's own dependencies, you must add them your-
self to your pyproject.toml.

Why should I commit .belay to my git repository?

The .belay/ folder primarily contains cached micropython dependencies.

Cached dependencies are to be included in your git repo because:

1. Micropython libraries are inherently small due to their operating conditions. Adding them to the git repo is not
an unreasonable burden.

2. The project will continue to work, even if an upstream dependency goes missing.

3. A lot of micropython libraries don't implement versioning, so more complicated dependency solving isn't feasi-
ble. Caching "known working" versions is the only convenient way of guaranteeing a repeatable deployment.

4.6 How Belay Works

In a nutshell, Belay sends python code (plain text) over the serial connection to the device's MicroPython Interactive
Interpreter Mode (REPL) and parses back the response.

The easiest way to explain it is to walk through what's going under the hood with an example.

4.6.1 Device Creation

device = belay.Device("/dev/ttyUSB0")

This creates a Device object that connects to the microcontroller. Belay resets it, enters REPL mode, and then runs
some convenience imports on the board.

4.6.2 Task - Sending Code Over

Consider the following decorated function:

@device.task
def set_led(state):

"""This function sets a pin to the specified state."""
Pin(25, Pin.OUT).value(state) # Set a pin as an output, and set its value

The task decorator inspects the actual code of the function its decorating and sends it over to the microcontroller. Prior
to sending the code over, a few preprocessing steps are required. At first, the code looks like:

def set_led(state):
"""This function sets a pin to the specified state."""
Pin(25, Pin.OUT).value(state) # Set a pin as an output, and set its value

24 Chapter 4. Examples

https://github.com/BrianPugh/belay/blob/main/belay/snippets/convenience_imports_micropython.py

Belay, Release 0.0.0

Belay can only send around 25,600 characters a second, so we want to reduce the amount of unnecessary characters.
Some minification is performed to reduce the number of characters we have to send over to the device. The minification
removes docstrings, comments, and unnecessary whitespace. Dont hesitate to add docstrings and comments to your
code, they'll be stripped away before they reach your microcontroller. The minification maintains all variable names
and line numbers, which can be important for debugging. After minification, the code looks like:

def set_led(state):
0
Pin(25,Pin.OUT).value(state)

The 0 is just a one character way of saying pass, in case the removed docstring was the entire body. This reduces the
number of transmitted characters from 158 to just 53, offering a 3x speed boost.

After minification, the @__belay decorator is added. On-device, this defines a variant of the function,
_belay_FUNCTION_NAME that performs the following actions:

1. Takes the returned value of the function, and serializes it to a string using repr.

2. Prints the resulting string to stdout, so it can be read by the host computer and deserialized via ast.
literal_eval.

Conceptually, its as if the following code ran on-device (minification removed for clarity):

def set_led(state):
Pin(25, Pin.OUT).value(state)

def _belay_set_led(*args, **kwargs):
res = set_led(*args, **kwargs)
print("_BELAYR" + repr(res))

A separate private function is defined with this serialization in case another on-device function calls set_led.

4.6.3 Task - Executing Function

Now that the function has been sent over and parsed by the microcontroller, we would like to execute it. The @task
decorator returns a function that when invoked, creates and sends a command to the device, and then parses back the
response. The complete lifecycle looks like this:

1. set_led(True) is called on the host. This doesn't execute the function we defined on host. Instead it triggers
the following actions.

2. Belay creates the string "_belay_set_led(True)".

3. Belay sends this command over serial to the REPL, causing it to execute on-device.

4. On-device, the result of set_led(True) is None. This gets serialized to the string None, which gets printed to
stdout.

5. Belay reads this response form stdout, and deserializes it back to the None object.

6. None is returned on host from the set_led(True) call.

This has a few limitations, namely:

1. Each passed in argument must be a python literals (None, booleans, bytes, numbers, strings, sets, lists, and dicts).

2. User code cannot print a message that begins with _BELAY, otherwise the remainder of the message will attempt
to be parsed.

4.6. How Belay Works 25

Belay, Release 0.0.0

3. The returned data of the function must also be a python literal(s).

4.7 API

exception AuthenticationError

Bases: BelayException

Invalid password or similar.

exception ConnectionLost

Bases: BelayException

Lost connection to device.

class Device(*args, **kwargs)
Bases: Registry

Belay interface into a micropython device.

implementation

Implementation details of device.

Type
Implementation

MAX_CMD_HISTORY_LEN = 1000

clear: Callable[[], None] = <bound method _DictMixin.clear of <Device: []>>

close()→ None
Close the connection to device.

get: Callable[[...], Type] = <bound method _DictMixin.get of <Device: []>>

items: Callable = <bound method _DictMixin.items of <Device: []>>

keys: Callable[[], KeysView] = <bound method _DictMixin.keys of <Device: []>>

reconnect(attempts: int | None = None)→ None
Reconnect to the device and replay the command history.

Parameters
attempts (int) -- Number of times to attempt to connect to board with a 1 second delay
in-between. If None, defaults to whatever value was supplied to init. If init value is 0, then
defaults to 1.

static setup(f, *, minify=True, register=True, record=True)
Decorator that executes function's body in a global-context on-device when called.

Function arguments are also set in the global context.

Can either be used as a staticmethod @Device.setup for marking methods in a subclass of Device, or as
a standard method @device.setup for marking functions to a specific Device instance.

Parameters

• f (Callable) -- Function to decorate. Can only accept and return python literals.

• minify (bool) -- Minify cmd code prior to sending. Defaults to True.

26 Chapter 4. Examples

Belay, Release 0.0.0

• register (bool) -- Assign an attribute to self.setup with same name as f. Defaults to
True.

• record (bool) -- Each invocation of the executer is recorded for playback upon reconnect.
Defaults to True.

• autoinit (bool) -- Automatically invokes decorated functions at the end of object
__init__. Methods will be executed in order-registered. Defaults to False.

sync(folder: str | Path, dst: str = '/', keep: None | list | str | bool = None, ignore: None | list | str = None,
minify: bool = True, mpy_cross_binary: str | Path | None = None, progress_update=None)→ None

Sync a local directory to the remote filesystem.

For each local file, check the remote file's hash, and transfer if they differ. If a file/folder exists on the remote
filesystem that doesn't exist in the local folder, then delete it (unless it's in keep).

Parameters

• folder (str, Path) -- Single file or directory of files to sync to the root of the board's
filesystem.

• dst (str) -- Destination directory on device. Defaults to unpacking folder to root.

• keep (None | str | list | bool) -- Do NOT delete these file(s) on-device if not
present in folder. If true, don't delete any files on device. If false, delete all unsynced
files (same as passing []). If dst is None, defaults to ["boot.py", "webrepl_cfg.
py", "lib"].

• ignore (None | str | list) -- Git's wildmatch patterns to NOT sync to the device.
Defaults to ["*.pyc", "__pycache__", ".DS_Store", ".pytest_cache"].

• minify (bool) -- Minify python files prior to syncing. Defaults to True.

• mpy_cross_binary (Union[str, Path, None]) -- Path to mpy-cross binary. If pro-
vided, .py will automatically be compiled. Takes precedence over minifying.

• progress_update -- Partial for rich.progress.Progress.update(task_id,...)
to update with sync status.

sync_dependencies(package: module | str, *subfolders: str | Path, dst='/lib', **kwargs)
Convenience method for syncing dependencies bundled with package.

If using Belay's package manager feature, set dependencies_path to a folder inside your python package
(e.g. dependencies_path="mypackage/dependencies").

The following example will sync all the files/folders in mypackage/dependencies/main to device's /
lib.

import mypackage

device.sync_package(mypackage, "dependencies/main")

For intended use, sync_dependencies should be only be called once. Multiple invocations over-
write/delete previous calls' contents.

Good
device.sync_package(mypackage, "dependencies/main", "dependencies/dev")

Bad (deletes on-device files from "dependencies/main")
device.sync_package(mypackage, "dependencies/main")
device.sync_package(mypackage, "dependencies/dev")

4.7. API 27

Belay, Release 0.0.0

Parameters

• package (Union[ModuleType, str]) -- Either the imported package or the name of a
package that contains the data we would like to sync.

• *subfolders -- Subfolder(s) to combine and then sync to dst. Typically something like
"dependencies/main"

• dst (Union[str, Path]) -- On-device destination directory. Defaults to /lib.

• **kwargs -- Passed along to Device.sync.

static task(f, *, minify=True, register=True, record=False)
Decorator that send code to device that executes when decorated function is called on-host.

Can either be used as a staticmethod @Device.task for marking methods in a subclass of Device, or as
a standard method @device.task for marking functions to a specific Device instance.

Parameters

• f (Callable) -- Function to decorate. Can only accept and return python literals.

• minify (bool) -- Minify cmd code prior to sending. Defaults to True.

• register (bool) -- Assign an attribute to self.task with same name as f. Defaults to
True.

• record (bool) -- Each invocation of the executer is recorded for playback upon reconnect.
Only recommended to be set to True for a setup-like function. Defaults to False.

static teardown(f, *, minify=True, register=True, record=True)
Decorator that executes function's body in a global-context on-device when device.close() is called.

Function arguments are also set in the global context.

Can either be used as a staticmethod @Device.teardown for marking methods in a subclass of Device,
or as a standard method @device.teardown for marking functions to a specific Device instance.

Parameters

• f (Callable) -- Function to decorate. Can only accept and return python literals.

• minify (bool) -- Minify cmd code prior to sending. Defaults to True.

• register (bool) -- Assign an attribute to self.teardownwith same name as f. Defaults
to True.

• record (bool) -- Each invocation of the executer is recorded for playback upon reconnect.
Defaults to True.

static thread(f, *, minify=True, register=True, record=True)
Decorator that send code to device that spawns a thread when executed.

Can either be used as a staticmethod @Device.thread for marking methods in a subclass of Device, or
as a standard method @device.thread for marking functions to a specific Device instance.

Parameters

• f (Callable) -- Function to decorate. Can only accept python literals as arguments.

• minify (bool) -- Minify cmd code prior to sending. Defaults to True.

• register (bool) -- Assign an attribute to self.thread with same name as f. Defaults
to True.

28 Chapter 4. Examples

Belay, Release 0.0.0

• record (bool) -- Each invocation of the executer is recorded for playback upon reconnect.
Defaults to True.

values: Callable[[], ValuesView] = <bound method _DictMixin.values of <Device:
[]>>

exception FeatureUnavailableError

Bases: BelayException

Feature unavailable for your board's implementation.

class Implementation(name: str, version: Tuple[int, int, int], platform: str, emitters: Tuple[str])
Bases: object

Implementation dataclass detailing the device.

Parameters

• name (str) -- Type of python running on device. One of {"micropython",
"circuitpython"}.

• version (Tuple[int, int, int]) -- (major, minor, patch) Semantic versioning of
device's firmware.

• platform (str) -- Board identifier. May not be consistent from MicroPython to Circuit-
Python. e.g. The Pi Pico is "rp2" in MicroPython, but "RP2040" in CircuitPython.

• emitters (tuple[str]) -- Tuple of available emitters on-device {"native", "viper"}.

emitters: Tuple[str]

name: str

platform: str

version: Tuple[int, int, int]

exception MaxHistoryLengthError

Bases: BelayException

Too many commands were given.

exception PyboardException

Bases: Exception

Uncaught exception from the device.

exception SpecialFunctionNameError

Bases: BelayException

Reserved function name that may impact Belay functionality.

Currently limited to:

• Names that start and end with double underscore, __.

• Names that start with _belay or __belay

list_devices()→ List[str]
Lists available device ports.

For example:

4.7. API 29

Belay, Release 0.0.0

['/dev/cu.usbmodem1143401', '/dev/cu.usbmodem113101']

Returns
Available devices identifiers.

Return type
list[str]

minify(code: str)→ str
Minify python code.

Naive code minifying that preserves names and linenos. Performs the following:

• Removes docstrings.

• Removes comments.

• Removes unnecessary whitespace.

Parameters
code (str) -- Python code to minify.

Returns
Minified code.

Return type
str

30 Chapter 4. Examples

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

31

Belay, Release 0.0.0

32 Chapter 5. Indices and tables

PYTHON MODULE INDEX

b
belay, 26

33

Belay, Release 0.0.0

34 Python Module Index

INDEX

A
AuthenticationError, 26

B
belay

module, 26

C
clear (Device attribute), 26
close() (Device method), 26
ConnectionLost, 26

D
Device (class in belay), 26

E
emitters (Implementation attribute), 29

F
FeatureUnavailableError, 29

G
get (Device attribute), 26

I
Implementation (class in belay), 29
implementation (Device attribute), 26
items (Device attribute), 26

K
keys (Device attribute), 26

L
list_devices() (in module belay), 29

M
MAX_CMD_HISTORY_LEN (Device attribute), 26
MaxHistoryLengthError, 29
minify() (in module belay), 30
module

belay, 26

N
name (Implementation attribute), 29

P
platform (Implementation attribute), 29
PyboardException, 29

R
reconnect() (Device method), 26

S
setup() (Device static method), 26
SpecialFunctionNameError, 29
sync() (Device method), 27
sync_dependencies() (Device method), 27

T
task() (Device static method), 28
teardown() (Device static method), 28
thread() (Device static method), 28

V
values (Device attribute), 29
version (Implementation attribute), 29

35

	Who is Belay For?
	What Problems Does Belay Solve?
	Installation
	Examples
	Installation
	Quick Start
	call
	setup
	task
	teardown
	thread
	sync
	sync_dependencies
	Subclassing Device

	CircuitPython
	Reverting
	Physical Configuration

	Connections
	Reconnect
	How State is Restored

	Interface
	Serial
	UDev Rules

	WebREPL

	Package Manager
	Configuration
	Dependencies
	Groups
	Pytest

	CLI Commands
	new
	update
	install
	run
	Running a Script on Device
	Virtual Environment

	clean
	cache
	info
	list
	clear

	Q&A
	How does Belay's package manager compare to mip?
	What limitations does Belay's package manager have?
	Why should I commit .belay to my git repository?

	How Belay Works
	Device Creation
	Task - Sending Code Over
	Task - Executing Function

	API

	Indices and tables
	Python Module Index
	Index

