
Belay
Release 0.0.0

Brian Pugh

Aug 13, 2022

CONTENTS:

1 Who is Belay For? 3

2 What Problems Does Belay Solve? 5

3 Installation 7

4 Examples 9
4.1 Installation . 9
4.2 Quick Start . 10
4.3 How Belay Works . 11
4.4 API . 13

5 Indices and tables 15

Python Module Index 17

Index 19

i

ii

Belay, Release 0.0.0

Belay is a library that enables the rapid development of projects that interact with hardware via a micropython-
compatible board.

Belay works by interacting with the REPL interface of a micropython board from Python code running on PC.

Quick Video of Belay in 22 seconds.

See the documentation for usage and other details.

CONTENTS: 1

https://www.youtube.com/watch?v=wq3cyjSE8ek
https://belay.readthedocs.io

Belay, Release 0.0.0

2 CONTENTS:

CHAPTER

ONE

WHO IS BELAY FOR?

Belay is for people creating a software project that needs to interact with hardware. Examples include:

• Control a motor so a webcam is always pointing at a person.

• Turn on an LED when you receive a notification.

• Read a potentiometer to control system volume.

If you have no need to run Python code on PC, then Belay is not for you.

3

Belay, Release 0.0.0

4 Chapter 1. Who is Belay For?

CHAPTER

TWO

WHAT PROBLEMS DOES BELAY SOLVE?

Typically, having a python script interact with hardware involves 3 major challenges:

1. On-device firmware (usually C or MicroPython) for directly handling hardware interactions. Typically this is
developed, compiled, and uploaded as a (nearly) independent project.

2. A program on your computer that performs the tasks specified and interacts with the device.

3. Computer-to-device communication protocol. How are commands and results transferred? How does the device
execute those commands?

This is lot of work if you just want your computer to do something simple like turn on an LED. Belay simplifies all of
this by merging steps 1 and 2 into the same codebase, and manages step 3 for you. Code is automatically synced at the
beginning of script execution.

5

Belay, Release 0.0.0

6 Chapter 2. What Problems Does Belay Solve?

CHAPTER

THREE

INSTALLATION

Belay requires Python >=3.8 and can be installed via:

pip install belay

The micropython-compatible board only needs micropython installed; no additional preparation is required.

7

Belay, Release 0.0.0

8 Chapter 3. Installation

CHAPTER

FOUR

EXAMPLES

Turning on an LED with Belay takes only 6 lines of code. Functions decorated with the task decorator are sent to the
device and interpreted by the MicroPython interpreter. Calling the decorated function on-host sends a command to the
device to execute the actual function.

import belay

device = belay.Device("/dev/ttyUSB0")

@device.task
def set_led(state):

Pin(25, Pin.OUT).value(state)

set_led(True)

For more examples, see the examples folder.

4.1 Installation

Belay requires Python >=3.8 and can be installed from pypi via:

python -m pip install belay

To install directly from github, you can run:

python -m pip install git+https://github.com/BrianPugh/belay.git

For development, its recommended to use Poetry:

git clone https://github.com/BrianPugh/belay.git
cd belay
poetry install

9

https://github.com/BrianPugh/belay/tree/main/examples

Belay, Release 0.0.0

4.2 Quick Start

Belay is a library that makes it quick and easy to interact with hardware via a MicroPython-compatible microcontroller.

Belay has a single imporant class, Device.

import belay

device = belay.Device("/dev/ttyUSB0")

Creating a Device object connects to the board at the provided port. On connection, the device is reset into REPL
mode, and a few common imports are performed on-device, namely:

import binascii, errno, hashlib, machine, os, time
from machine import ADC, I2C, Pin, PWM, SPI, Timer
from time import sleep
from micropython import const

The device object has 4 important methods for projects: directly calling, task, thread, and sync. These are de-
scribed in the subsequent subsections.

4.2.1 Call

Directly calling the Device instance invokes a command string on-device. For example, device("foo = 1 + 2")
would execute the code foo = 1 + 2 on-device. This is typically used in Belay projects to import modules and declare
global variables.

4.2.2 task

The task decorator sends the decorated function to the device, and replaces the host function with a remote-executor.

Consider the following:

@device.task
def foo(a):

return a * 2

Invoking bar = foo(5) on host sends a command to the device to execute the function foo with argument 5. The
result, 10, is sent back to the host and results in bar == 10. This is the preferable way to interact with hardware.

If a task is registered to multiple Belay devices, it will execute sequentially on the devices in the order that they were
decorated (bottom upwards). The return value would be a list of results in order.

To explicitly call a task on just one device, it can be invoked device.task.foo().

10 Chapter 4. Examples

Belay, Release 0.0.0

4.2.3 thread

thread is similar to task, but executes the decorated function in the background on-device.

@device.thread
def led_loop(period):

led = Pin(25, Pin.OUT)
while True:

led.toggle()
sleep(period)

led_loop(1.0) # Returns immediately

Not all MicroPython boards support threading, and those that do typically have a maximum of 1 thread. The decorated
function has no return value.

If a thread is registered to multiple Belay devices, it will execute sequentially on the devices in the order that they were
decorated (bottom upwards).

To explicitly call a thread on just one device, it can be invoked device.thread.led_loop().

4.2.4 sync

For more complicated hardware interactions, additional python modules/files need to be available on the device's filesys-
tem. sync takes in a path to a local folder. The contents of the folder will be synced to the device's root directory.

For example, if the local filesystem looks like:

project
main.py
board

foo.py
bar

baz.py

Then, after device.sync("board") is ran from main.py, the remote filesystem will look like

foo.py
bar

baz.py

4.3 How Belay Works

In a nutshell, Belay sends python code (plain text) over the serial connection to the device's MicroPython Interactive
Interpreter Mode (REPL) and parses back the response.

The easiest way to explain it is to walk through what's going under the hood with an example.

4.3. How Belay Works 11

Belay, Release 0.0.0

4.3.1 Device Creation

device = belay.Device("/dev/ttyUSB0")

This creates a Device object that connects to the microcontroller. Belay resets it, enters REPL mode, and then runs a
few common imports on-device for convenience. Currently, these convenience imports are:

import binascii, errno, hashlib, machine, os, time
from machine import ADC, I2C, Pin, PWM, SPI, Timer
from time import sleep
from micropython import const

4.3.2 Task - Sending Code Over

Consider the following decorated function:

@device.task
def set_led(state):

"""This function sets a pin to the specified state."""
Pin(25, Pin.OUT).value(state) # Set a pin as an output, and set its value

The task decorator inspects the actual code of the function its decorating and sends it over to the microcontroller. Prior
to sending the code over, a few preprocessing steps are required. At first, the code looks like:

def set_led(state):
"""This function sets a pin to the specified state."""
Pin(25, Pin.OUT).value(state) # Set a pin as an output, and set its value

Belay can only send around 25,600 characters a second, so we want to reduce the amount of unnecessary characters.
Some minification is performed to reduce the number of characters we have to send over to the device. The minification
removes docstrings, comments, and unnecessary whitespace. Dont hesitate to add docstrings and comments to your
code, they'll be stripped away before they reach your microcontroller. The minification maintains all variable names
and line numbers, which can be important for debugging. After minification, the code looks like:

def set_led(state):
0
Pin(25,Pin.OUT).value(state)

The 0 is just a one character way of saying pass, in case the removed docstring was the entire body. This reduces the
number of transmitted characters from 158 to just 53, offering a 3x speed boost.

After minification, the @__belay_json decorator is added. On-device, this defines a variant of the function,
_belay_FUNCTION_NAME that performs the following actions:

1. Takes the returned value of the function, and serializes it to json data. Json was chosen since its built into
micropython and is "good enough."

2. Prints the resulting json data to stdout, so it can be read by the host computer.

Conceptually, its as if the following code ran on-device (minification removed for clarity):

def set_led(state):
Pin(25, Pin.OUT).value(state)

(continues on next page)

12 Chapter 4. Examples

Belay, Release 0.0.0

(continued from previous page)

def _belay_set_led(*args, **kwargs):
res = set_led(*args, **kwargs)
print(json.dumps(res))

A separate private function is defined with this serialization in case another on-device function calls set_led.

4.3.3 Task - Executing Function

Now that the function has been sent over and parsed by the microcontroller, we would like to execute it. The @task
decorator returns a function that when invoked, creates and sends a command to the device, and then parses back the
response. The complete lifecycle looks like this:

1. set_led(True) is called on the host. This doesn't execute the function we defined on host. Instead it triggers
the following actions.

2. Belay creates the string "_belay_set_led(True)".

3. Belay sends this command over serial to the REPL, causing it to execute on-device.

4. On-device, the result of set_led(True) is None. This gets json-serialized to null, which gets printed to stdout.

5. Belay reads this response form stdout, and deserializes it back to None.

6. None is returned on host from the set_led(True) call.

This has a few limitations, namely:

1. Each passed in argument must be completely reconstructable by their string representation. This is true for basic
python builtins like numbers, strings, lists, dicts, and sets.

2. The invoked function cannot be printing to stdout, otherwise the host-side parsing of the result won't work.

3. The returned data of the function must be json-serializeable.

4.4 API

class Device(*args, startup: str = '\nimport binascii, errno, hashlib, machine, os, time\nfrom machine import
ADC, I2C, Pin, PWM, SPI, Timer\nfrom time import sleep\nfrom micropython import const\n',
**kwargs)

Belay interface into a micropython device.

task(f: Optional[Callable[..., None]] = None, /, minify: bool = True, register: bool = True)
Decorator that send code to device that executes when decorated function is called on-host.

Parameters

• f (Callable) -- Function to decorate.

• minify (bool) -- Minify cmd code prior to sending. Defaults to True.

• register (bool) -- Assign an attribute to self.task with same name as f. Defaults to
True.

thread(f: Optional[Callable[..., None]] = None, /, minify: bool = True, register: bool = True)
Decorator that send code to device that spawns a thread when executed.

Parameters

4.4. API 13

Belay, Release 0.0.0

• f (Callable) -- Function to decorate.

• minify (bool) -- Minify cmd code prior to sending. Defaults to True.

• register (bool) -- Assign an attribute to self.thread with same name as f. Defaults
to True.

__call__(cmd: str, deserialize: bool = True, minify: bool = True)→ Union[None, bool, int, float, str, List,
Dict]

Execute code on-device.

Parameters

• cmd (str) -- Python code to execute.

• deserialize (bool) -- Deserialize the received bytestream from device stdout as JSON
data. Defaults to True.

• minify (bool) -- Minify cmd code prior to sending. Reduces the number of characters
that need to be transmitted. Defaults to True.

Return type
Return value from executing code on-device.

sync(folder: Union[str, Path], minify=True)→ None
Sync a local directory to the root of remote filesystem.

For each local file, check the remote file's hash, and transfer if they differ. If a file/folder exists on the remote
filesystem that doesn't exist in the local folder, then delete it.

Parameters
folder (str, Path) -- Directory of files to sync to the root of the board's filesystem.

exception PyboardException

Bases: Exception

Uncaught exception from the device.

exception SpecialFilenameError

Bases: Exception

Not allowed filename like boot.py or main.py.

minify(code: str)→ str
Minify python code.

Naive code minifying that preserves names and linenos. Performs the following:

• Removes docstrings.

• Removes comments.

• Removes unnecessary whitespace.

Parameters
code (str) -- Python code to minify.

Returns
Minified code.

Return type
str

14 Chapter 4. Examples

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

15

Belay, Release 0.0.0

16 Chapter 5. Indices and tables

PYTHON MODULE INDEX

b
belay, 14

17

Belay, Release 0.0.0

18 Python Module Index

INDEX

Symbols
__call__() (Device method), 14

B
belay
module, 14

D
Device (class in belay), 13

M
minify() (in module belay), 14
module

belay, 14

P
PyboardException, 14

S
SpecialFilenameError, 14
sync() (Device method), 14

T
task() (Device method), 13
thread() (Device method), 13

19

	Who is Belay For?
	What Problems Does Belay Solve?
	Installation
	Examples
	Installation
	Quick Start
	Call
	task
	thread
	sync

	How Belay Works
	Device Creation
	Task - Sending Code Over
	Task - Executing Function

	API

	Indices and tables
	Python Module Index
	Index

