
Belay
Release 0.0.0

Brian Pugh

Oct 24, 2022

CONTENTS:

1 Who is Belay For? 3

2 What Problems Does Belay Solve? 5

3 Installation 7

4 Examples 9
4.1 Installation . 9
4.2 Quick Start . 10
4.3 CircuitPython . 11
4.4 Connections . 12
4.5 How Belay Works . 14
4.6 API . 16

5 Indices and tables 21

Python Module Index 23

Index 25

i

ii

Belay, Release 0.0.0

Belay is a library that enables the rapid development of projects that interact with hardware via a MicroPython or
CircuitPython compatible board.

Belay works by interacting with the REPL interface of a MicroPython board from Python code running on PC.

Belay supports wired serial connections (USB) and wireless connections via WebREPL over WiFi.

Quick Video of Belay in 22 seconds.

See the documentation for usage and other details.

CONTENTS: 1

https://www.youtube.com/watch?v=wq3cyjSE8ek
https://belay.readthedocs.io

Belay, Release 0.0.0

2 CONTENTS:

CHAPTER

ONE

WHO IS BELAY FOR?

Belay is for people creating a software project that needs to interact with hardware. Examples include:

• Control a motor so a webcam is always pointing at a person.

• Turn on an LED when you receive a notification.

• Read a potentiometer to control system volume.

If you have no need to run Python code on PC, then Belay is not for you.

3

Belay, Release 0.0.0

4 Chapter 1. Who is Belay For?

CHAPTER

TWO

WHAT PROBLEMS DOES BELAY SOLVE?

Typically, having a python script interact with hardware involves 3 major challenges:

1. On-device firmware (usually C or MicroPython) for directly handling hardware interactions. Typically this is
developed, compiled, and uploaded as a (nearly) independent project.

2. A program on your computer that performs the tasks specified and interacts with the device.

3. Computer-to-device communication protocol. How are commands and results transferred? How does the device
execute those commands?

This is lot of work if you just want your computer to do something simple like turn on an LED. Belay simplifies all of
this by merging steps 1 and 2 into the same codebase, and manages step 3 for you. Code is automatically synced at the
beginning of script execution.

5

Belay, Release 0.0.0

6 Chapter 2. What Problems Does Belay Solve?

CHAPTER

THREE

INSTALLATION

Belay requires Python >=3.8 and can be installed via:

pip install belay

The MicroPython-compatible board only needs MicroPython installed; no additional preparation is required. If using
CircuitPython, and additional modification needs to be made to boot.py. See documentation for details.

7

https://belay.readthedocs.io/en/latest/CircuitPython.html

Belay, Release 0.0.0

8 Chapter 3. Installation

CHAPTER

FOUR

EXAMPLES

Turning on an LED with Belay takes only 6 lines of code. Functions decorated with the task decorator are sent to the
device and interpreted by the MicroPython interpreter. Calling the decorated function on-host sends a command to the
device to execute the actual function.

import belay

device = belay.Device("/dev/ttyUSB0")

@device.task
def set_led(state):

print(f"Printing from device; turning LED to {state}.")
Pin(25, Pin.OUT).value(state)

set_led(True)

Outputs from print calls from on-device user-code are forwarded to host stdout.

For more examples, see the examples folder.

4.1 Installation

Belay requires Python >=3.8 and can be installed from pypi via:

python -m pip install belay

To install directly from github, you can run:

python -m pip install git+https://github.com/BrianPugh/belay.git

For development, its recommended to use Poetry:

git clone https://github.com/BrianPugh/belay.git
cd belay
poetry install

9

https://github.com/BrianPugh/belay/tree/main/examples

Belay, Release 0.0.0

4.2 Quick Start

Belay is a library that makes it quick and easy to interact with hardware via a MicroPython-compatible microcontroller.

Belay has a single imporant class, Device.

import belay

device = belay.Device("/dev/ttyUSB0")

Creating a Device object connects to the board at the provided port. On connection, the device is reset into REPL
mode, and a few common imports are performed on-device, namely:

import binascii, errno, hashlib, machine, os, time
from machine import ADC, I2C, Pin, PWM, SPI, Timer
from time import sleep
from micropython import const

The device object has 4 important methods for projects: directly calling, task, thread, and sync. These are de-
scribed in the subsequent subsections.

4.2.1 Call

Directly calling the Device instance invokes a command string on-device. For example, device("foo = 1 + 2")
would execute the code foo = 1 + 2 on-device. This is typically used in Belay projects to import modules and declare
global variables.

4.2.2 task

The task decorator sends the decorated function to the device, and replaces the host function with a remote-executor.

Consider the following:

@device.task
def foo(a):

return a * 2

Invoking bar = foo(5) on host sends a command to the device to execute the function foo with argument 5. The
result, 10, is sent back to the host and results in bar == 10. This is the preferable way to interact with hardware.

If a task is registered to multiple Belay devices, it will execute sequentially on the devices in the order that they were
decorated (bottom upwards). The return value would be a list of results in order.

To explicitly call a task on just one device, it can be invoked device.task.foo().

10 Chapter 4. Examples

Belay, Release 0.0.0

4.2.3 thread

thread is similar to task, but executes the decorated function in the background on-device.

@device.thread
def led_loop(period):

led = Pin(25, Pin.OUT)
while True:

led.toggle()
sleep(period)

led_loop(1.0) # Returns immediately

Not all MicroPython boards support threading, and those that do typically have a maximum of 1 thread. The decorated
function has no return value.

If a thread is registered to multiple Belay devices, it will execute sequentially on the devices in the order that they were
decorated (bottom upwards).

To explicitly call a thread on just one device, it can be invoked device.thread.led_loop().

4.2.4 sync

For more complicated hardware interactions, additional python modules/files need to be available on the device's filesys-
tem. sync takes in a path to a local folder. The contents of the folder will be synced to the device's root directory.

For example, if the local filesystem looks like:

project
main.py
board

foo.py
bar

baz.py

Then, after device.sync("board") is ran from main.py, the remote filesystem will look like

foo.py
bar

baz.py

4.3 CircuitPython

Belay also supports CircuitPython. Unlike MicroPython, CircuitPython automatically mounts the device's filesystem
as a USB drive. This is usually convenient, but it makes the filesystem read-only to the python interpreter. To get
around this, we need to manually add the following lines to boot.py on-device.

import storage

storage.remount("/")

Afterwards, reset the device and it's prepared for Belay.

4.3. CircuitPython 11

https://circuitpython.org

Belay, Release 0.0.0

4.4 Connections

This section describes the connection with the device, as well as other elements regarding the connection of the device.

4.4.1 Reconnect

In the event that the device is temporarily disconnected, Belay can re-attempt to connect to the device and restore state.
Typically, this will only work with projects that are purely sensor/actuator IO and do not have complicated internal
states.

To enable this feature, set the keyword attempts when declaring your Device. Belay will attempt up to attempts
times to reconnect to the device with 1 second delay in-between attempts. If Belay cannot restore the connection, it
will raise a ConnectionLost exception.

Example:

device = Device("/dev/ttyUSB0", attempts=10)

By default, attempts=0, meaning that Belay will not attempt to reconnect with the device. If attempts is set to a
negative value, Belay will infinitely attempt to reconnect with the device. If using a serial connection, a serial device
__might__ not be assigned to the name upon reconnecting. See the UDev Rules section for ways to ensure the same
name is assigned upon reconnection.

How State is Restored

This section describes how the state is restored on-device, so the user can understand the limitations of Belay's reconnect
feature.

1. When Belay sends a command to the device, the command is recorded into a command history. Func-
tion/generator calls are not recorded. These calls are expected to be frequent and not significantly modify the
device's internal state.

2. On device disconnect, nothing happens.

3. On the next attempted Belay call, Belay will begin to attempt to reconnect with the device. This inherently resets
the device, and consequently resets the device's python interpreter state.

4. Upon reconnection, Belay will replay the entire call history. For most projects, this should be relatively short
and typically includes things like:

a. File-syncs: device.sync("board/")

b. Library imports: device("import mysensor")

b. Global object creations: device("sensor = mysensor.Sensor()")

c. Task definitions:

@device.task
def read_sensor():

return sensor.read()

This history replay can result in a longer-than-expected blocking call.

12 Chapter 4. Examples

Belay, Release 0.0.0

4.4.2 Interface

Belay currently supports two connection interfaces:

1. Serial, typically over a USB cable. Recommended connection method.

2. WebREPL, typically over WiFi. Experimental and relatively slow due to higher command latency.

Serial

This is the typical connection method over a cable and is fairly self-explanatory.

UDev Rules

To ensure your serial device always connects with the same name, we can create a udev rule. Invoke lsusb to figure
out some device information; the response should look like:

belay:~/belay$ lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 239a:80f4 Adafruit Pico
Bus 001 Device 002: ID 2109:3431 VIA Labs, Inc. Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Left of the colon is the 4-character idVendor value, and right of the colon is the 4-character idProduct value. Next,
edit a file at /etc/udev/rules.d/99-usb-serial.rules to contain:

SUBSYSTEM=="tty", ATTRS{idVendor}=="xxxx", ATTRS{idProduct}=="yyyy", SYMLINK+="target"

For example, the following will map the "Adafruit Pico" to /dev/ttyACM10:

SUBSYSTEM=="tty", ATTRS{idVendor}=="239a", ATTRS{idProduct}=="80f4", SYMLINK+="ttyACM10"

Finally, the following command will reload the udev rules without having to do a reboot:

sudo udevadm control --reload-rules && sudo udevadm trigger

WebREPL

WebREPL is a protocol for accessing a MicroPython REPL over websockets.

WebREPL requires the MicroPython-bundled webrepl server running on-device. To run the WebREPL server on
boot, we need two files on device:

1. boot.py that connects to your WiFi and starts the server.

2. webrepl_cfg.py that contains the password to access the WebREPL interface.

These files may look like (tested on an ESP32):

###########
boot.py
###########
def do_connect(ssid, pwd):

import network
(continues on next page)

4.4. Connections 13

https://github.com/micropython/webrepl

Belay, Release 0.0.0

(continued from previous page)

sta_if = network.WLAN(network.STA_IF)
if not sta_if.isconnected():

print("connecting to network...")
sta_if.active(True)
sta_if.connect(ssid, pwd)
while not sta_if.isconnected():

pass
print("network config:", sta_if.ifconfig())

Attempt to connect to WiFi network
do_connect("YOUR WIFI SSID", "YOUR WIFI PASSWORD")

import webrepl

webrepl.start()

##################
webrepl_cfg.py
##################
PASS = "python"

Once these files are on-device, connect to the device by providing the correct IP address and password. The ws://
prefix tells Belay to use WebREPL.

device = belay.Device("ws://192.168.1.100", password="python")

4.5 How Belay Works

In a nutshell, Belay sends python code (plain text) over the serial connection to the device's MicroPython Interactive
Interpreter Mode (REPL) and parses back the response.

The easiest way to explain it is to walk through what's going under the hood with an example.

4.5.1 Device Creation

device = belay.Device("/dev/ttyUSB0")

This creates a Device object that connects to the microcontroller. Belay resets it, enters REPL mode, and then runs
some convenience imports on the board.

14 Chapter 4. Examples

https://github.com/BrianPugh/belay/blob/main/belay/snippets/convenience_imports_micropython.py

Belay, Release 0.0.0

4.5.2 Task - Sending Code Over

Consider the following decorated function:

@device.task
def set_led(state):

"""This function sets a pin to the specified state."""
Pin(25, Pin.OUT).value(state) # Set a pin as an output, and set its value

The task decorator inspects the actual code of the function its decorating and sends it over to the microcontroller. Prior
to sending the code over, a few preprocessing steps are required. At first, the code looks like:

def set_led(state):
"""This function sets a pin to the specified state."""
Pin(25, Pin.OUT).value(state) # Set a pin as an output, and set its value

Belay can only send around 25,600 characters a second, so we want to reduce the amount of unnecessary characters.
Some minification is performed to reduce the number of characters we have to send over to the device. The minification
removes docstrings, comments, and unnecessary whitespace. Dont hesitate to add docstrings and comments to your
code, they'll be stripped away before they reach your microcontroller. The minification maintains all variable names
and line numbers, which can be important for debugging. After minification, the code looks like:

def set_led(state):
0
Pin(25,Pin.OUT).value(state)

The 0 is just a one character way of saying pass, in case the removed docstring was the entire body. This reduces the
number of transmitted characters from 158 to just 53, offering a 3x speed boost.

After minification, the @__belay decorator is added. On-device, this defines a variant of the function,
_belay_FUNCTION_NAME that performs the following actions:

1. Takes the returned value of the function, and serializes it to a string using repr.

2. Prints the resulting string to stdout, so it can be read by the host computer and deserialized via ast.
literal_eval.

Conceptually, its as if the following code ran on-device (minification removed for clarity):

def set_led(state):
Pin(25, Pin.OUT).value(state)

def _belay_set_led(*args, **kwargs):
res = set_led(*args, **kwargs)
print("_BELAYR" + repr(res))

A separate private function is defined with this serialization in case another on-device function calls set_led.

4.5. How Belay Works 15

Belay, Release 0.0.0

4.5.3 Task - Executing Function

Now that the function has been sent over and parsed by the microcontroller, we would like to execute it. The @task
decorator returns a function that when invoked, creates and sends a command to the device, and then parses back the
response. The complete lifecycle looks like this:

1. set_led(True) is called on the host. This doesn't execute the function we defined on host. Instead it triggers
the following actions.

2. Belay creates the string "_belay_set_led(True)".

3. Belay sends this command over serial to the REPL, causing it to execute on-device.

4. On-device, the result of set_led(True) is None. This gets serialized to the string None, which gets printed to
stdout.

5. Belay reads this response form stdout, and deserializes it back to the None object.

6. None is returned on host from the set_led(True) call.

This has a few limitations, namely:

1. Each passed in argument must be a python literals (None, booleans, bytes, numbers, strings, sets, lists, and dicts).

2. User code cannot print a message that begins with _BELAY, otherwise the remainder of the message will attempt
to be parsed.

3. The returned data of the function must also be a python literal(s).

4.6 API

class Device(*args, startup: Optional[str] = None, attempts: int = 0, **kwargs)
Belay interface into a micropython device.

implementation

Implementation details of device.

Type
Implementation

task(f: Optional[Callable[..., None]] = None, /, minify: bool = True, register: bool = True)
Decorator that send code to device that executes when decorated function is called on-host.

Parameters

• f (Callable) -- Function to decorate. Can only accept and return python literals.

• minify (bool) -- Minify cmd code prior to sending. Defaults to True.

• register (bool) -- Assign an attribute to self.task with same name as f. Defaults to
True.

thread(f: Optional[Callable[..., None]] = None, /, minify: bool = True, register: bool = True)
Decorator that send code to device that spawns a thread when executed.

Parameters

• f (Callable) -- Function to decorate. Can only accept python literals as arguments.

• minify (bool) -- Minify cmd code prior to sending. Defaults to True.

16 Chapter 4. Examples

Belay, Release 0.0.0

• register (bool) -- Assign an attribute to self.thread with same name as f. Defaults
to True.

__call__(cmd: str, minify: bool = True, stream_out: ~typing.TextIO = <_io.TextIOWrapper
name='<stdout>' mode='w' encoding='utf-8'>, record=True)

Execute code on-device.

Parameters

• cmd (str) -- Python code to execute.

• minify (bool) -- Minify cmd code prior to sending. Reduces the number of characters
that need to be transmitted. Defaults to True.

• record (bool) -- Record the call for state-reconstruction if device is accidentally reset.
Defaults to True.

Return type
Return value from executing code on-device.

close()→ None
Close the connection to device.

reconnect(attempts: Optional[int] = None)→ None
Reconnect to the device and replay the command history.

Parameters
attempts (int) -- Number of times to attempt to connect to board with a 1 second delay
in-between. If None, defaults to whatever value was supplied to init. If init value is 0, then
defaults to 1.

sync(folder: Union[str, Path], dst: str = '/', keep: Union[None, list, str, bool] = None, ignore: Union[None,
list, str] = None, minify: bool = True, mpy_cross_binary: Optional[Union[str, Path]] = None,
progress_update=None)→ None

Sync a local directory to the remote filesystem.

For each local file, check the remote file's hash, and transfer if they differ. If a file/folder exists on the remote
filesystem that doesn't exist in the local folder, then delete it (unless it's in keep).

Parameters

• folder (str, Path) -- Single file or directory of files to sync to the root of the board's
filesystem.

• dst (str) -- Destination directory on device. Defaults to unpacking folder to root.

• keep (None | str | list | bool) -- Do NOT delete these file(s) on-device if not
present in folder. If true, don't delete any files on device. If false, delete all unsynced
files (same as passing []). If dst is None, defaults to ["boot.py", "webrepl_cfg.
py"].

• ignore (None | str | list) -- Git's wildmatch patterns to NOT sync to the device.
Defaults to ["*.pyc", "__pycache__", ".DS_Store", ".pytest_cache"].

• minify (bool) -- Minify python files prior to syncing. Defaults to True.

• mpy_cross_binary (Union[str, Path, None]) -- Path to mpy-cross binary. If pro-
vided, .py will automatically be compiled. Takes precedence over minifying.

• progress_update -- Partial for rich.progress.Progress.update(task_id,...)
to update with sync status.

4.6. API 17

Belay, Release 0.0.0

exception AuthenticationError

Bases: BelayException

Invalid password or similar.

exception FeatureUnavailableError

Bases: BelayException

Feature unavailable for your board's implementation.

class Implementation(name: str, version: Tuple[int, int, int], platform: str, emitters: Tuple[str])
Bases: object

Implementation dataclass detailing the device.

Parameters

• name (str) -- Type of python running on device. One of {"micropython",
"circuitpython"}.

• version (Tuple[int, int, int]) -- (major, minor, patch) Semantic versioning of
device's firmware.

• platform (str) -- Board identifier. May not be consistent from MicroPython to Circuit-
Python. e.g. The Pi Pico is "rp2" in MicroPython, but "RP2040" in CircuitPython.

• emitters (tuple[str]) -- Tuple of available emitters on-device {"native", "viper"}.

emitters: Tuple[str]

name: str

platform: str

version: Tuple[int, int, int]

exception PyboardException

Bases: Exception

Uncaught exception from the device.

exception SpecialFunctionNameError

Bases: BelayException

Reserved function name that may impact Belay functionality.

Currently limited to:

• Names that start and end with double underscore, __.

• Names that start with _belay or __belay

minify(code: str)→ str
Minify python code.

Naive code minifying that preserves names and linenos. Performs the following:

• Removes docstrings.

• Removes comments.

• Removes unnecessary whitespace.

Parameters
code (str) -- Python code to minify.

18 Chapter 4. Examples

Belay, Release 0.0.0

Returns
Minified code.

Return type
str

4.6. API 19

Belay, Release 0.0.0

20 Chapter 4. Examples

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

21

Belay, Release 0.0.0

22 Chapter 5. Indices and tables

PYTHON MODULE INDEX

b
belay, 17

23

Belay, Release 0.0.0

24 Python Module Index

INDEX

Symbols
__call__() (Device method), 17

A
AuthenticationError, 17

B
belay

module, 17

C
close() (Device method), 17

D
Device (class in belay), 16

E
emitters (Implementation attribute), 18

F
FeatureUnavailableError, 18

I
Implementation (class in belay), 18
implementation (Device attribute), 16

M
minify() (in module belay), 18
module

belay, 17

N
name (Implementation attribute), 18

P
platform (Implementation attribute), 18
PyboardException, 18

R
reconnect() (Device method), 17

S
SpecialFunctionNameError, 18
sync() (Device method), 17

T
task() (Device method), 16
thread() (Device method), 16

V
version (Implementation attribute), 18

25

	Who is Belay For?
	What Problems Does Belay Solve?
	Installation
	Examples
	Installation
	Quick Start
	Call
	task
	thread
	sync

	CircuitPython
	Connections
	Reconnect
	How State is Restored

	Interface
	Serial
	UDev Rules

	WebREPL

	How Belay Works
	Device Creation
	Task - Sending Code Over
	Task - Executing Function

	API

	Indices and tables
	Python Module Index
	Index

